| Internetfional

i S
7 L TN N

SRi

International

ool
TN

@

EXPERIMENTAL ROBOT
PSYCHOLOGY

Technical Note 363

November 5, 1985

By: Kurt G. Konolige
Artificial Intelligence Center
Computer Science and Technology Division

APPROVED FOR PUBLIC RELEASE:
DISTRIBUTION UNLIMITED

This research was made possible, in part, by a gift from the System
Development Foundation. It was also supported, in part, by Grant
IN00014-80-C-0296 from the Office of Naval Research.

333 Ravenswood Ave. ¢ Menlo Park, CA 94025
14151 326-6200 o TWX: 910-373-2046 ¢ Telex: 334-486



Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
05 NOV 1985 2. REPORT TYPE 00-11-1985 to 00-11-1985
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Experimental Robot Psychology 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

SRI International,333 Ravenswood Avenue,Menlo Park,CA,94025 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a. REPORT b. ABSTRACT c. THISPAGE 21
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18



Abstract

In this paper 1 argue that an ntentional methodology is appropriate in the design of robot
agents in cooperative planning domains — at least in those domains that are sufficiently
open-ended to require extensive reasoning about the environment (including other agents).
That is, we should take seriously the notion that an agent’s cognitive state expresses beliefs
about the world, desires or goals to change the world, and intentions or plans that are likely
to achieve these goals. In cooperative situations, reasoning about these cognitive structures
is important for communication and problem-solving. How can we construct such models
of agent cognition? Here I propose an approach that I call it ezperimental robot psychology
because it involves formalizing and reasoning about the design of existing robot agents. It

shows promise of yielding an efficient and general means of reasoning about cognitive states.
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I. Introduction

Recently I had the experience of helping a friend paint the interior of a house. I was given
the task of painting the walls in one room. As is normally the case, the ceiling had been
painted first (if the ceiling were painted after the walls, there would be a substantial risk
of sprinkling the walls with ceiling paint). Having had experience with this sort of thing
before, T was particularly careful when painting the junction of the walls and ceiling, to
make sure that [ did not get any wall paint on the ceiling.

Exercising care in painting the junction cost me extra time and effort in a task | wanted
to do as quickly and easily as possible. Had the circumstances been slightly different -—
if the ceiling had been unpainted, if my friend had wanted the walls painted very quickly,
or if | had wanted to work fast because of an important appointment — | would not have
been as careful. As a rational agent, | was influenced in carrying out the task by a variety
of considerations: my heliefs about the state of the physical world, and the intentions
and desires of my workmate. To have done otherwise would have been less than rational;
one could justifiably accuse me of “blindly following orders,” without taking into account
circumstances that any reasonable person would consider in modifying his performance of a
cooperative task. Such literal behavior is irrational because it results in a loss of efficiency
in achieving an overall goal — the ceiling might have to be painted over again.

My purpose in employing this example is to suggest that an intentional model is an
appropriate one to use in building cooperative robot planning systems, By intentional I
mean that the cognitive state of the robot is constructed from a set of beliefs about the
world and a set of desires or goals that it attempts to realize by forming plans. This model

is both normative and descriptive: a robot would consitute an intentional system, and, in



addition, reason about other robots (or people, if they were involved) as if they also were
inientional systems. By having robot planners reason about the beliefs and desires of other
agents, we can hope to have robots achieve the type of rational cooperative behavior that
people exhibit in such tasks as wall-painting.

The idea of endowing robots with an intentional character is certainly not a new one
in artificial intelligence (Al); it has its roots in McCarthy’s Advice Taker program [9].
More recently, Dennett [3] has advanced the notion that it is often useful from a descriptive
standpoint to consider complicated programs {such as chess-playing machines) as intentional
systems, even if they were not designed to represent beliefs or desires explicitly. I am not
going to argue furtber for what might be called a normative intentional methodology;!
instead of that, I will describe the characteristics of cooperative planning domains for which
the full-blown intentional approach is appropriate. In these domains, it is essential that
agents be able to reason effectively about the cognitive state of other agents. I will then
suggest a useful approach for accomplishing this task is one I have called experimental
robot psychology. This method involves analyzing the design of a robot agent’s cognitive
processes, axiomatizing them, and developing inference rules that can be “plugged back”

into the agent.

"Until very recently there has been a notable lack of competing methodologies in the Al field. Rosenschein
and Pereira [15] describe an alternative approach based on a theory of an automaton interacting with its
environment.



II. Cooperative Planning in Open-Ended Domains

Problem demains fer which a normative intentional approach is suitable have the following

characteristics:

e There is a natural partitioning of the environment, either spatially or functionally. An
example of the former is a surveillance task in which several areas must be patrolled; of

the fatter, assembly tasks in which major subcomponents ¢an be assembled in parallel.

¢ [Fach process has a dynamic view of the environment: other processes may be per-
forming tasks, and there may be chains of events that are the result of ongoing natural

processes.
o Each process has partial or imperfect knowledge ol the environment.

s The cost of communication among processes may be high, or the communication
channels may be slow, so that there 15 a significant delay in sending large amounts of

information.

I will call a problem domain that satisfies these criteria an open-ended, cooperative do-
main. The cooperative aspect comes from the partitioned nature of the solution: it suggests
an approach in which processes in a network cooperate with one another to achieve cer-
tain goals, communicating to coordinate tasks and exchange information. By open-ended,
I refer to the inherent complexity of the problem, which does not admit of enumerative or
algorithmic solutions. I will elaborate on both these concepts.

Since the cost of communication is high, each process must be capable of reacting intel-

ligently on its own to changes in the environment. Furthermore, because of the uncertamty



inherent in information gathered from sensory apparatus, and because of limitations on the
functional capabilities of the processes, each process must have a well-developed modei of
its environment (including the presence of other cooperating agents}, along with the ability
to reason about actions and events in quite complex ways. Such autonomous intelligent
processes will be called agents.

Relaxing any of the above criteria allows a simpler approach to the problem domain.
The most obvious is the cost of communication. If processes are linked by reliable, high-
specd communication channels, it makes more sense to centralize planning and coordination
for all the processes than to provide each one with an autonomous ability to reason about
its interaction with other processes. The collection of processes can be viewed as a large,
coordinated machine. An example of this type of coordination is the operating system on
mainframe computers: an executive program regulates the activity of both system and user
programs, while a fast main memory is shared for interprocess communication.

Relaxing the criterion of imperfect information leads to a different simplification. In
this case, communication costs can still be high, so a solution using distributed processors
is efficient. However, because perfect information about the problem is available, planning
can be conducted from a central location. Various subtasks are then distributed to the indi-
vidual processes, along with the requisite information for their solution (e.g., protocols for
communication if one processor’s subtask must be coordinated with others). This paradigm
has been called distributing the solution by Davis [2]. Since a solution can be planned in a
centralized manner, there is no need for individual processes to model or reason about the
intentions of other processes.

Finally, the environment (which includes the processes themselves) must be compli-
cated enough to require reasoning about intentionality. An example of a device for which
an intentional model is not necessary is a thermostat. Although McCarthy [10] would al-
low thermostats to be described as having beliefs and goals, he admits that they can be
understood without attributing such qualities to them. In the first place, the design of

thermostats (at least the simple ones that run home heaters) does not include any explicit



representation of beliefs or goals as we are accustomed to finding them in Al programs. The
bimetal spring may be an indicator of temperature, but it does not have the functionality
of a belief: for example, no further facts about the world are ever deduced from it by the
thermostat. 1t follows that, if the design of the thermostat is simple enough, 1 can predict
its behavior without reference to beliefs or goals — 1 just note that, at certain temperatures,
it will switch on the heater, while at another it will switch it off.

These examples are all by way of negation; the problem domains are simple enough
(not open-ended) so that a set of processes could function effectively without incorporating
a full-blown intentional structure. Typically, successful Al systems are limited to display-
ing narrow expertise in specialized fields: expert systems for diagnosing specific medical
domains, programs for chess-plaving, and so on. These systems do not exhibit “common-
sense” intelligence; they have no ability to reason aboui what I want from them, except
perhaps in a very limited fashion — for example, a “verbosity switch” or some similar
feature might control the amount of output.

The type of reasoning ] have in mind for intentional, cooperative agents is of a very
different nature. 1 will try to give a broad outline of the necessary capabilities by dividing

them into five general categories:

e Reasoning about the environment on the basis of what is known, including reasoning

about the beliefs, goals, and plans of other agents.

e Communicating to exchange information about the environment and about intentions

to act.

Reasoning about the effects and interactions of future actions and events.

Forming cooperative plans on the basis of all the above information.

Monitoring and synchronizing the execution of individual plans.

This list is not meant to suggest a strict sequential division of the reasoning task. In

practice, plan formation and execution are going on all the time, and execution of one plan



{e.g., a plan to communicate a request for assistance) may be necessary for the formation of
another. Similarly, communication and reasoning about the environment can occur not only
at the time of plan formation, but also during execution (for example, for synchronization

of activities or recovery {rom errors).

The various components of an intentional system fit into this framework in the following
way. An agent’s beliefs represent the environment as the agent views it. In current Al
technology, these beliefs are a set of sentences in some internal language, often a variant of
the predicate calculus; some authors call the set of beliefs a knowledge base [8]. An agent
reasons about the world by making inferences based on its beliefs. As new information
comes in from its sensors, the agent tries to keep its beliefs consistent with the observed
state of the world.

An agent also has a possibly ordered set of desires representing current goals of the
agent, which it attempts to realize by performing actions. The agent must have some
beliefs regarding its own capabilities for action; by reasoning about the state of the world
and the way in which acting is likely to change it, an agent attempts to derive a set of
intentions or plans for achieving some or all of its goals.

A special class of sensors and effectors provide the input/output channels used for com-
munication with other agents. Communication is singled out as an action of special impor-
tance because of the role it plays in exchanging information among agents as they form and
execute cooperative plans. It is significant that agents must reason extensively about the
content of a communication before information can be exchanged effectively. For example,
if agent A tells agent B that p is true, it does not necessarily follow that B believes this
to be the case; if B has better information about p, he may know p to be false, and will
therefore not accept A’s utterance at face value. This is in direct contrast to communication
in a “distributed-solution” domain, where messages have a precisely defined effect. In an
open-ended domain, effective communication is made possible by agents’ knowledge of one

anothers’ cognitive states.



III. Experimental Robot Psychology

In the normative intentional methodology, an agent’s cognitive state is constructed by
dividing it into components: beliels, goals, and plans. As | have already indicated, many
of the reasoning tasks to be performed by agents depend upon knowledge of other agents’
cognitive states. Representing and effectively reasoning about cognitive states are thus
important topics in multiagent planning. Let me suggest an approach that | have employed
successfully in the area of belief.

Consider a typical robot planning agent of the sort that was popular in the early 1970s,
such as STRIPS [4]. Its domain is the blocks world, a simple abstract space of multi-
colored blocks in which it was the only agent. The beliefs of this agent are given as a
finite set of sentences in the first-order predicate calculus. STRIPS has a simple infer-
ence mechanism for deriving consequences of its beliefs; for example, from ON{A, B) and
ON(z,y) D ~CLEAR(y) it can deduce ~CLEAR{B). STRIPS also has a mechanism for
building plans to achieve its goals; 1 will return to this in a moment, but for now I want to
concentrate on the concept of belief.

The part of STRIPS that is dedicated to belief can be represented by the diagram of
Figure 111.1. There is a set of sentences, the base sentences, that are STRIPS’® beliefs about
the world. Inference rules can be applied by a control strategy to derive consequences of
the base set. The whole box I call a belief subsystem to identify it is a component of the
agent’s cognitive state. A belief subsystem interacts with other components by means of
queries and responses. For example, the planning process may need to know whether a
predicate P is true of the world, so it issues a query about P. The control strategy receives

the query and checks if P or =P is one of the base beliefs. If it is, an answer can be returned



Figure I11.1: A Belief Subsystem
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immediately. If not, the control strategy might try to derive P or =P, using the base beliefs
and the inference rules. At some point, it either succeeds in a derivation or gives up and
answers that P is not believed.

Belief subsystems, for the most part, are admirably suited to description and axiomati-
zation in a formal system. Let L be the language of the belief subsystem (the base sentences
and all derived beliefs are expressions in L}; | will call L the object language because it is
the object of the description. For the description language itself, I use another language
— ML, the metalanguage. ML has terms that refer to expressions of L (which is what
makes it a metalanguage), and a distinguished predicate Bel, such that Bel{a, [p!) means
the L-expression “p” is one of agent a’s beliefs. The inference rules and control strategy of
a belief subsystem can be described by writing suitable axioms in M L {1 did this originally
in 1980 [6], by assuming that the inference rules and control strategy formed a complete
first-order proof system).

The point | want to make here is that it is often possible to develop cognitive models
as a basis for reasoning about cognitive states by examining the internal design of robot
agents. This is precisely what I did in arriving at the belief subsystem model. The formal
axiomatization of the model then provides a means of reasoning about cognitive states. Of

course, 1n the interest of efficiency and technical feasibility it is often necessary to abstract



Figure i11.2: The procees of experimental robot psychology
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just the important properties of a model and make simplifying assumptions. For example,
this led me to the deduction model of belief, in which the control strategy part of the belief
subsystem is assumed to take on a particularly simple form [7].

Now suppose that this strategy has been carried through for some portion of the cogni-
tive state, say for belief. | actually have in hand a formal means of reasoning about belief,
based with fair accuracy on the design of the agent’s belief subsystem. If I want the agent
to reason about other agents’ beliefs (and reflect introspectively upon its own), it is a nat-
ural step to simply include the belief model just developed as part of the agent’s reasoning
abilities. That is, the agent will view other agents as having belief subsystems similar to
its own. 1 call this the recursive property of belief [7].

The whole process I have just described, that is, of developing a reasoning mechanism
for belief that is useful to agents, can be outlined as in Figure II1.2. The first part of
the process — deriving a model by analyzing cognitive structure — 1 call experimental
robot psychology. In many cases, as in the deduction model of helief, it can be a useful
methodology for constructing models of robot cognition that can then be “plugged back”
into the agent to serve as a means of having the agent reason about cognitive states.

The method of “plugging back” an axiomatization, that is, integrating it with the infer-
ential mechanism already present in an agent, is not an easy one. As long experience in Al
has shown, letting a general-purpose automatic theorem prover loose on a set of axioms is

almost a guarantee of computational inefficiency. Many theorems are proved, but usually



Figure 111.3: Beliefs and action

By — B
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not the ones we consider important for reasoning about the intended domain. So there is
a process of refinement of the axioms and inference rules that operate on them to achieve
what McCarthy and Hayes (1969) have called heuristic adequacy: the ability to derive those
consequences of the axioms that are necessary for commonsense reasoning. That is why I
have drawn an additional box in the diagram labeled inference rules — these are the special
inference techniques that must be developed to make reasoning about the madel efficient.

Fortunately, the verv manner in which experimental robot psychology proceeds makes
available a method for achieving heuristic adequacy. Let me illustrate this by returning
to the STRIPS example and examining the role of the belief subsystem in the planning
process. STRIPS starts out with a set of sentences containing its beltefs about an initial
situation, plus a goal sentence that it is supposed to make true by performing actions. The
effect of an action is to change the state of the world, including the state of STRIFS’ beliefs.
I will diagram this in Figure II1.3. In this diagram, STRIPS has a belief set By in the initial
situation 8;. The relation between the beliefs and the situation, indicated by the double
arrow, is that the beliefs are intended to be true of the situation. If STRIPS performs
action a, the state of the world will change to situation s2; I have indicated this by drawing
a line between s; and sz, indexed by the action &. STRIP’s beliefs in the new situation, Bz,
should now reflect the changed state of the world, so that the double arrow again indicates
that By is true of ss.

A theoretically justifiable way for an agent to plan would be to reason as follows: “Sup-

pose that my beliefs are B;; then the world looks like s;. Under the influence of my

10



performing action a, the world would look like sz, in which case my beliefs should be B..”
The advantage of this kind of reasoning is its flexibility; it accounts for the general relation-
ship of belief and action, and so can be called upon to sanction many types of inferences —
for example the concept of a test: an action performed to determine if some property was
true of s; by examining its outcome in 82. This is the type of theory.advanced by Moore
[13] in his thesis on the interaction of knowledge and action.

In STRIPS, on the other hand, actions are described by precondition-eflect pairs that
operate on the belief sets: if the preconditions of « are satisfied by Bj, then the action may
be performed, changing B, into Bz in the manner indicated by the eflects. STRIPS bypasses
(or perhaps, compresses, depending on your point of view) all of the general reasoning about
action and belief — from Bj to s, to s, to B, — by employing a syntactic transformation
of belief sets. 1 have drawn a direct arrow from B; to By in the diagram to indicate this,

To form a plan, one strategy STRIPS uses is to start with its beliefs in the initial
situation, then to check whether the preconditions of any action are satisfied. I so, it
applies the action by changing the belief set into a new one, based on the eflect part of the
action. STRIPS now has a belief set that applies to the new situation; it can use inference
rules to deduce consequences of the new beliefs, just as it did in the initial situation. It is
important to realize that, when STRIPS employs an action description in this manner, it is
transforming a set of beliefs in one situation into the set of beliefs that should obtain in the
new situation resulting from the action. For example, if STRIPS possesses the belief that
the door is closed, and it successfully performs the action of opening the door, it should
then believe that the door is open; STRIPS can arrive at this belief in the new situation
either by direct observation of the door or by reasoning about the effects of the door-opening
action that just took place. This use of action descriptions by STRIPS to form plans is, in
essence, a simulation of its own actual behavior.

One consequence of this approach is that the generality of reasoning about the effect of
actions on situations is nullified: STRIPS has no way of reasoning about tests, for example.

What is gained is efficiency in the reasoning process. In the more general theory, axioms are

11



Figure 111.4: Simulation by semantic attachment
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written that describe the eflects of actions, as well as the properties of belief subsystems (as
1 did previously with the Bel predicate), and then theorems are proved about the particular
case involving s;, Bj, and a. As | have argued above, this emulation strategy does not by
itself generate a practical automatic reasoning system. But the STRIPS approach does. Its
representation of action allows it to caleulate the belief set B,. With B; in hand, so to
speak, it can then simulate the processing its belief subsystem would actually carry out in
the new situation. So, in effect, STRIPS reasons about its beliefs in a future situation s by
acting as if it had beliefs appropriate to sz, and letting its internal cognitive processes (such
as belief derivation} operate in the normal manner. Effictency is achieved if the internal
cognitive processes are themselves efficient, which must be true in any case for any agent

that interacts in a real-time environment.

There is a natural way to view STRIPS’ simulative strategy in terms of the diagram
outlining experimental robot psychology. Instead of proceeding from the model to a for-
mal axiomatization and then, finally, to inference rules, the model itsel{ is “plugged back”
and used to reason about belief. As I have remarked, efficiency is achieved at the cost of
generality, for the model can be used only if complete knowledge of a situation is avail-
able (STRIPS’ representation of action demands that the belief set describe each situation
completely, or at least, the part of it that is relevant to performing the action). So now
the diagram looks like Figure [11.4. Fortunately, there is a way of reconciling the efficiency

of simulation with the generality of emulation: namely, to incorporate simulation as one

12



of the inference rules, applicable when complete information is available. Readers who are
familiar with the work of Weyhrauch [16] will recognize the method of semantic attach-
ment: proving facts about a model by running a computational version of it. To make this
method truly useful, however, it must be generalized to work for at least some simple cases
of partial information. For example, an agent could not use simulation to reason about
the statement “There is someone whom John believes to be a spy,” because John’s belief is
incompletely specified. This is where the idea of partial models becomes important. Partial
models are models whose parts may remain unspecified. It is possible to use partial models
for simulation when some information is missing.! In the deduction model of belief, I make

extensive use of partial models in arriving at efficient proof methods.

'The working title of this paper was Partial Models for Robot Cognition; originally I intended to expand
at some length on the topic of partial models, but instead realized that the methodology of experimental
robot psychology would require explanation. So I wiil reserve the topic of partial models for 2 future
paper.

13



1V. Conclusion

In this paper I have argued briefly for a normative intentional methodology in the design
of robot agents in cooperative planning domains — at least in those domains that are suf-
ficiently open-ended to require extensive reasoning about the environment (including other
agents). Since this entails reasoning about the cognitive state of agents, I have proposed
an approach to modeling cognitive states that is hased on the already available design of
current robot agents; 1 call this approach experimental robot psyvchology. When combined
with the technique of semantic attachment, it shows promise of yielding an efficient and
general means of reasoning about cognitive states.

Let me conclude with a few remarks about what experimental robot psychology will not
achieve on its own in the cooperative planning domain, unless combined with significant
theoretical underpinnings on other fronts. In developing the deduction model of belief, |
already had available the design of belief subsystems, as realized in robot planning systems
such as STRIPS. And the study of belief systems or knowledge bases continues to be an
area in which much AI research is concentrated, as attested to by recent developments in
introspective models [7,8,14] and default and nonmonotonic reasoning [1]. In other areas,
theory-building efforts have either not yet begun or barely gotten underway, despite the fact
that they are sorely needed for progress in the cooperative planning domain. Among these
are a theory of action for concurrent and multiple-agent environments (although Georgefl
[5] has made a start here), theories that relate conflicting goals to the formation of intention,
and the general relation of intention to action (but see McDermott [12] for an interesting
approach and discussion of issues). Also neglected are theories of complicated interactions

that can arise in the real world, such as the revision of false beliel under new information,

14



or the replanning process that must occur if some phase of a plan’s execution fails. In all
these areas, it is impossible to pursue the methodology of experimental robot psychology

because the relevant cognitive structure does not exist.
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